TURN IT ON AND OFF: WHAT’S NEW IN LOCAL ANESTHESIA

Alan W. Budenz, MS, DDS, MBA
Dept. of Biomedical Sciences and Dept. of Dental Practice
Vice Chair of Diagnostic Sciences and Services
University of the Pacific, Arthur A. Dugoni School of Dentistry
San Francisco, California
abudenz@pacific.edu
Physiology of Anesthetic Agents

- How do we assess anesthesia?
 - Question the patient
 - Probe the area
 - Electric pulp tester
 - Cold test

- How is anesthetic success defined in studies?
 - Ideal: 2 consecutive 80/80 readings with EPT within 15 minutes of injection (and sustained for 60 mins)
 - Delayed pulpal onset: occurs in the mandible of 19 – 27% of patients (even though soft tissue is numb)
 - Delayed over 30 minutes in 8%

Physiology of Anesthetic Agents

- Reasons for delayed or failed onset
 - Disassociation rate, transport/perfusion rate, re-association rate, binding rate

\[BH^+ = \text{active, ionized form:} \]

Can’t pass through nerve membrane (water soluble)

\[\text{Can pass through nerve membrane (lipid soluble)} \]

\[B = \text{inactive, unionized form:} \]
Anesthesia Delivery Assistance Devices

- Devices that vibrate – Frequency dependent conduction
 - Vibration stimulates nerves, allowing greater anesthetic access to receptor sites to produce better anesthesia

DentalVibe
Anesthesia Delivery Assistance Devices

- **The Gate Control Theory of Pain**
 - Upon injection of anesthetic solution:
 - Nociceptors send pain messages to the brain via slow conducting, thin C nerve fibers
 - By contrast, vibration stimuli of the oral mucosa are transmitted by rapid conducting, large A-beta fibers
 - The vibration sensations reach the brain first and cause release from inhibitory interneurons, blocking the C fiber pain stimulation by “closing the pain gate”
Reasons for Anesthetic Failures

1. Anatomical/physiological variations
2. Technical errors of administration
3. Patient anxiety
4. Inflammation and infection
5. Defective/expired solutions

4. Inflammation and infection

- Causes increased tissue acidity (decreased pH)
- Less anesthetic solution can enter into the nerve due to change in dissociation equilibrium
- Result is decreased anesthetic effect
Reasons for Anesthetic Failures

4. Inflammation and infection

- Increased tissue acidity (decreased pH)
- Decreased anesthetic disassociation
- Decreased anesthetic effect

Injecting too much anesthetic, or injecting it too fast, may decrease the tissue buffering capacity
Reasons for Anesthetic Failures

4. Inflammation and infection

| Condition | pH | 24% of injected anesthetic is unionized | pH 5.0 = 0.13%
| | | | (1/20 of 7.4 pH) |
| | | | pH 4.0 = 0.013%
| | | | (1/200 of 7.4 pH) |
| | | | pH 3.0 = 0.0013%
			(1/2000 of 7.4 pH)
Normal tissue	pH = 7.4		
Intraneuronal	pH = 7.0	11.2 % to B	
Inflammation or infection	pH = 5.0 to 3.0		
Troubleshooting Anesthesia

- The “Hot” Tooth

- First, give a block injection
 - Well away from the site of any local inflammation or infection
 - The low pH will prevent the disassociation of the anesthetic agent
 - A needle should not be inserted into an area of active infection, such as a periapical abcess
 - The volume of anesthetic is likely to increase the pain
 - There is the potential for spreading the infection
Troubleshooting Anesthesia

➢ The “Hot” Tooth

➢ First, give a block injection

➢ The Gow-Gates mandibular division block has a significantly higher success rate than all other techniques

 Gow-Gates 52%
 Vazirani-Akinosi 41%
 Conventional IA 36%
 Buccal-plus-lingual infiltration 27%

 All with 4% articaine with 1:100,000 epinephrine

➢ No technique was fully acceptable by itself

Troubleshooting Anesthesia

- The “Hot” Tooth
- First, give a block injection
 - Well away from the site of any local inflammation or infection
- Second, give a periodontal ligament (PDL) or intraosseous injection
 - Intraosseous injections are more reliable and have better duration
- Or, give a buccal &/or lingual infiltration with articaine (or prilocaine)

Hasse et al, *Comparing anesthetic efficacy of articaine versus lidocaine as a supplemental buccal infiltration of the mandibular first molar after an inferior alveolar nerve block*, JADA Vol 139 No 9, Sept 2008

Kanaa et al, *Articaine buccal infiltration enhances the effectiveness of lidocaine inferior alveolar nerve block*, Int Endo J 42, 2009
Infiltration Anesthesia

- Works well for the maxilla, but the mandible...
- Work fairly well for anteriors and bicuspids
- Widely varying predictability for molars
- Greater success using articaine & faster onset
 - Lidocaine 45 – 67%; articaine 75 – 92%
 - Lidocaine 6.1 – 11.1 minutes; articaine 4.2 – 4.7 minutes

Meechan, *Practical Dental Local Anesthesia*, *Quintessence*, 2002
Pharmacology of Anesthetic Agents

- A Practical Armamentarium:
 - From a meta-analysis of 13 clinical trials:
 - Evidence strongly supported articaine’s superiority over lidocaine for infiltration anesthesia
 - Evidence was weak for any significant difference between lidocaine and articaine for block anesthesia

Pharmacology of Anesthetic Agents

- There is no contraindication for combining any of the amide anesthetic agents
- Using plain anesthetic for “pre-injection”, then using anesthetic with vasoconstrictor
 - Anesthetic with vasoconstrictor: pH ~3.5
 - Plain anesthetic: pH ~6.5
 - Plain has less “burning” sensation

- Plain should have better dissociation in a site of infection (but will wash out faster!)
- Using plain first may mildly increase cardiovascular side-effects of vasoconstrictor
Pharmacology of Anesthetic Agents

- There is no contraindication for combining any of the amide anesthetic agents.
- However, all of the amide anesthetics are additive in dosage.
- Therefore, you should not exceed the maximum safe dosage for the agent with the highest concentration.

Jong RH & Bonin JD, *Mixtures of local anesthetics are no more toxic than the parent drugs*, Anesthes Vol 54 No 3, 1981
Pharmacology of Anesthetic Agents

- Local anesthetic dosage
 - Calculating dosage: For adults
 - 150 lb. adult (FDA approved max. dosage):
 - 2% lidocaine w/epi = 13.33 cartridges
 - 4% prilocaine = 8.33 cartridges
 - Lidocaine & prilocaine together = 8.33 cartridges
 - 4% articaine = 6.66 cartridges
 - Lidocaine & articaine together = 6.66 cartridges
Buffering of Local Anesthetics

- Buffer with sodium bicarbonate immediately before delivery
- Increases dissociation of anesthetic agent for uptake into the nerve
 - Potentially more comfortable
 - Potentially faster onset
 - Potentially more profound
 - Potentially higher success rate
New Technology: OnSet

OnSet™ assembled and ready to buffer anesthetic cartridge

Onset™ Cartridge
Anesthetic Carpule
Onset™ Buffering Pen
Dosing indicator

Onset™ Cartridge Connector

3 mL Sodium Bicarbonate Cartridge

OnSet mixing pen: insert anesthetic cartridge, mix, load in syringe, and inject – for best results, inject within 30 seconds of mixing
New Technology: OnSet

- Improve patient satisfaction
 - More comfortable injections
 - More predictable anesthesia
 - More profound anesthesia

- Decrease appointment times
 - Less waiting for anesthetic onset (1 – 2 minutes)
 - See more patients
 - Emergency patients
 - Hygiene patients
Pharmacology

- **A Practical Armamentarium:**
 - 2% Lidocaine with 1:100,000 epinephrine
 - For one to two hour procedures and most block injections
 - 3% Mepivacaine plain
 - For short duration procedures or the rare “no vasoconstrictor” patient
 - 4% Articaine with 1:200,000 epinephrine
 - For infiltrations and “hard to anesthetize” patients
 - 0.5% Bupivacaine with 1:200,000 epinephrine
 - For prolonged pain control and long duration procedures
Attributes of Articaine

1. Fast onset
 - 1 to 6 minutes

2. Greater diffusion/penetration
 - Often obtain adequate anesthesia with infiltrations alone

3. More profound anesthesia

4. Greater success
 - With hard to anesthetize patients
 - Fewer missed blocks

5. Low allergenicity
 - Amide characteristic

6. Rapid metabolism
 - Ester characteristic
 - Half-life in bloodstream 27 minutes (lidocaine 90 minutes)
Nerve Injuries

- Anesthesia-induced nerve injuries are VERY rare (Temporary 0.15 – 0.54%; permanent 0.0001-0.01%)

- Most paresthesias are reversible, resolving within 2 to 8 weeks

- Mandibular nerve injuries are far more common than maxillary

- In North America, more injuries have been reported with prilocaine than with articaine
Nerve Injuries

There are multiple theories of cause:

- One of the leading theories:
 Injury due to direct contact of the anesthetic solution with the nerve (toxicity injury)

- All agents are neurotoxic, however, the higher the concentration, the higher the risk of causing neurotoxicity

It is noteworthy that in Denmark, where prilocaine is marketed as a 3% solution, 2 studies have linked paresthesia to 4% articaine use, but not to prilocaine use.

Nerve Injuries

What is the most likely cause of injury?

- One single cause is unlikely
- It appears that it may be the higher dose of drug (neurotoxicity) combined with a mechanical insult that predisposes the nerve to injury.

Nerve Injuries

Management of nerve injuries:

1. Advise the patient that the symptoms may continue for an indefinite time

- 85% (to 94%)* of injuries caused by injections recover spontaneously within 2 to 12 weeks
- ~5% will recover within 9 months
- Up to 10% of remaining injuries will likely never recover completely

Nerve Injuries

Management of nerve injuries:

2. Contact the patient after 24 hours
 - If symptoms have improved, GREAT!
 - If no improvement, use careful judgment to set up intervals for follow-up visits

3. If no improvement after 2 weeks, consider referral to a neurologist or to an oral surgeon familiar with management of nerve injuries.

Most injuries will show some sign of improvement within 2 weeks
Nerve Injuries

To reduce the risk of nerve injury when using prilocaine (Citanest) or articaine (Septocaine):

1. Inject less, usually about half the dosage, than for lidocaine or mepivacaine

Local anesthetic dosage

- FDA approved max. dosage for 150 lb. adult:
 - 2% lidocaine w/ epi = 13.33 cartridges
 - 4% prilocaine = 8.33 cartridges
 - 4% articaine = 6.66 cartridges
Nerve Injuries

To reduce the risk of nerve injury when using prilocaine (Citanest) or articaine (Septocaine):

1. Inject less, usually about half the dosage, than for lidocaine or mepivacaine

2. Inject that reduced volume more slowly — about twice as long as the rate with lidocaine or mepivacaine — particularly with the inferior alveolar nerve block technique
Nerve Injuries

- To reduce the risk of nerve injury when using prilocaine (Citanest) or articaine (Septocaine):
 - 75 – 95% of all paresthesia injuries from injections are with the inferior alveolar block injection

3. Due to apparent potential neurotoxicity injury, prudent clinicians may consider avoiding use of high-concentration (4 percent) anesthetic formulations for inferior alveolar nerve blocks in cases where there are viable alternatives.

Hillerup S et al, *Trigeminal nerve injury associated with injection of local anesthetics: Needle lesion or neurotoxicity*, JADA 142(5), May 2011
Mandibular Anesthesia

- The risk of nerve injury with administration of prilocaine (Citanest) or articaine (Septocaine) may be reduced by using “high” mandibular division block techniques
 - Gow-Gates technique
 - Vazirani-Akinosi technique

Mandibular Anesthesia

- Complete Mandibular Division Nerve blocks
 - Gow-Gates
 - Vazirani-Akinosi

Agur & Lee, Grant’s Atlas of Anatomy, 10th Ed, Lippincott Williams & Wilkins, 1999
Mandibular Anesthesia

- Comparison of mandibular division nerve block techniques
 - Conventional (Halsted) technique
 - Advantages:
 - Most familiar and most widely used
 - Good success rate (65 – 86\%+)
 - Disadvantages:
 - Higher success rates associated with increased incidence of positive aspiration
 - Moderate incidence of trismus and/or paresthesia
 - Multiple injections required for anesthesia of inferior alveolar, lingual, long buccal, and mylohyoid nerves
Mandibular Anesthesia

- Comparison of mandibular division nerve block techniques
 - Gow-Gates technique
 - Advantages:
 - Very high success rate (90 – 100%)
 - Extremely low incidence of positive aspirations
 - Significantly reduced incidence of trismus and/or paresthesia
 - Single injection for anesthesia of inferior alveolar, lingual, long buccal, and mylohyoid nerves
 - Disadvantages:
 - Technically a more difficult technique to master
 - Slower onset of anesthesia
Mandibular Anesthesia

- Comparison of mandibular division nerve block techniques
 - Vazirani-Akinosi technique
 - Advantages:
 - Moderate to high success rate (76 – 93%)
 - Extremely low incidence of positive aspirations
 - Significantly reduced incidence of trismus and/or paresthesia
 - Potential single injection for anesthesia of inferior alveolar, lingual, long buccal, and mylohyoid nerves
 - Less threatening to apprehensive patients (closed mouth)
 - Ability to anesthetize both sensory and motor nerve branches uniquely useful for patients with severe trismus
Mandibular Anesthesia

- Comparison of mandibular division nerve block techniques
 - Vazirani-Akinosi technique
 - Disadvantages:
 - Increased potential for operator error due to no bone contact
 - Higher incidence of unexpected and unusual side effects
 - Least reliable technique to achieve anesthesia of long buccal nerve
Troubleshooting Mandibular Anesthesia

- Repeated failure to achieve adequate anesthesia
- Take a panoramic radiograph

Incidence of bifid IA nerve: 4 patients in 5,000 films

Topical Anesthetics

- Lidocaine 2 – 5% (amide)

Note: esters have better absorption through mucosa*

- Benzocaine ≤ 20% (ester)
- Tetracaine 0.2 – 2% (ester)
- Cetacaine (benzocaine 14%, butamben 2%, tetracaine HCl 2% - esters)
- Anbesol (benzocaine 10%, phenol 0.5%, alcohol 70% - ester)

- Compounded topicals: combine amide and ester
 (Profound, Profound PET (Profpet), TAC 20 percent Alternate, TheBestTopicalEver)

*Therefore, a decreased safety margin, especially with children
Topical Anesthetics

- **Compounded formulas:**
 - Profound — 10% lidocaine, 10% prilocaine, 4% tetracaine
 - Profound PET (Profpet) — same as above plus 2% phenylephrine, more viscous
 - TAC 20 percent Alternate — 20% lidocaine, 4% tetracaine, 2% phenylephrine
 - TheBestTopicalEver — 12.5% lidocaine, 12.5% tetracaine, 3% prilocaine, 3% phenylephrine

Are neither FDA regulated nor unregulated:

“Unapproved drug products whose benefits may not outweigh their risks”

Topical Anesthetics

Compounded formulas:
- Maximum recommended dose is unknown
- Narrow difference between optimal therapeutic dose and toxic dose level
- Vary in composition, quality, and strength

Recommendation to avoid tissue sloughing:
- Apply for maximum of 60 – 90 seconds
- Rinse area thoroughly after application

Topical Anesthetics

- Refrigerant application: Pain Ease (Gebauer, Cleveland)
 - 1,1,1,3,3-pentafluoropropane/1,1,1,2-tetrafluoroethane
 - 5 second application
 - FDA approved for oral tissues
 - Nonirritant to oral mucosa
 - Nontoxic if inhaled
 - Significant reduction in posterior palatal injection pain in 1 study
 - Good evidence from medical studies
 - Limited dental anecdotal reports

Kosaraju A & Vandewalle KS, A comparison of a refrigerant and a topical anesthetic gel as preinjection anesthetics: A clinical evaluation, JADA Vol 140, Jan 2009
Topical Anesthetics

- **Oraqix**

 2.5% lidocaine, 2.5% prilocaine periodontal gel

 - Approved for intraoral use
 - 30 second onset
 - 20 minute duration
 (range 14 – 31 min.)
Topical Anesthetics

- **Dyclone (Dyclonine HCl)**
 - Currently commercially unavailable
 - Available from compounding pharmacies
 - 0.5%, or 1.0% DS
 - Apply with swab or as a diluted rinse
 - ~45ml for 1 minute (swish & spit)
 - Slow onset, 5 – 10 minutes
 - Duration ~30 minutes
Computer-Controlled Delivery Systems

- The “Wand”: Single Tooth Anesthesia (STA) system
 - Milestone Scientific

- The Comfort Control Syringe
 - Dentsply, Inc.

- Objective is to deliver the anesthetic at a rate and pressure that is below the threshold of pain
 - Potentially pain-free injections
 - Reduced volumes of anesthetic injected
Computer-Controlled Delivery Systems

The “Wand”: STA

- Can give all traditional injections
- Safer PDL injections
- Painless palatal injections

Can use for primary or secondary anesthetic injections
Computer-Controlled Delivery Systems

- The Comfort Control Syringe
 - Can give all traditional injections
 - Safer PDL injections
 - Painless palatal injections
 - Primary or secondary anesthesia
OraVerse (Phentolamine Mesylate)

- Phentolamine mesylate (alpha adrenergic antagonist) is a vasodilator used in medical indications since 1952
- Administered by injection
 - With standard dental syringe, same injection site, and identical technique used for delivery of the original local anesthetic agent(s)
- Dilates blood vessels at the anesthetic site, speeding up vascular removal of the anesthetic
 - Reverses the effect of vasoconstrictors
OraVerse Reversal Agent

Recovery time:

Median time to recovery of normal lip sensation

Lower lip:
- 70 minutes for OraVerse group vs. 155 minutes for control group (121% faster)
- Reduced median time to normal sensation by 85 minutes
- After 1 hour: 41% OraVerse patients normal vs. 7% of controls

Upper lip:
- 50 minutes for OraVerse group vs. 133 minutes for control group (166% faster)
- Reduced median time to normal sensation by 83 minutes
- After 1 hour: 59% OraVerse patients normal vs. 12% of controls

OraVerse Reversal Agent

Safety Profile
Across all studies:

- No contraindications
- No evident toxicity
- No known drug interactions with OraVerse
- No difference in adverse events versus control
 - Only 1% difference in transient injection site pain for OraVerse group (5%) versus the Control group (4%)
 - All adverse events were mild and resolved within 48 hours

OraVerse Reversal Agent

Dosage

- 1:1 ratio to local anesthetic
- Maximum recommended dose:
 - 2 cartridges for adults & adolescents 12 and older
 - 1 cartridge for patients 6-11 years of age and over 66 lbs.
 - ½ cartridge for children weighing 33-66 lbs.
 - Effective and safe in adults and children aged 6 and over and weighing 15 kg (33 lbs) or more

Evidence from 3 multi-center, double-blinded, randomized, controlled clinical trials involving patients aged 4 through 92
OraVerse Reversal Agent

- **When to use:**
 - Patients who have received anesthetic with a vasoconstrictor
 - Procedures where post-procedural pain is not anticipated:
 - Cavity preparations
 - Crown preparations
 - Crown placements
 - Inlays
 - Onlays
 - Veneers
 - Non-surgical periodontal scaling and root planning
 - Patients who may not be able to control post-op tendency to bite themselves
Keys to Success

- Anesthetic failures happen
- The “Three Strikes Rule”
 - 3 attempts at anesthesia, then stop
- It’s not about “fault”
 - It’s not the patient’s fault
 - It’s not your fault
 - Failures happen

Reschedule the patient!